Silting mutation in triangulated categories
نویسندگان
چکیده
منابع مشابه
Silting mutation in triangulated categories
In representation theory of algebras the notion of ‘mutation’ often plays important roles, and two cases are well known, i.e. ‘cluster tilting mutation’ and ‘exceptional mutation’. In this paper we focus on ‘tilting mutation’, which has a disadvantage that it is often impossible, i.e. some of summands of a tilting object can not be replaced to get a new tilting object. The aim of this paper is ...
متن کاملOn Silting-discrete Triangulated Categories
The aim of this paper is to study silting-discrete triangulated categories. We establish a simple criterion for silting-discreteness in terms of 2-term silting objects. This gives a powerful tool to prove silting-discreteness of finite dimensional algebras. Moreover, we will show Bongartz-type Lemma for silting-discrete triangulated categories.
متن کاملMutation in triangulated categories and rigid Cohen-Macaulay modules
We introduce the notion of mutation on the set of n-cluster tilting subcategories in a triangulated category with Auslander-Reiten-Serre duality. Using this idea, we are able to obtain the complete classifications of rigid Cohen-Macaulay modules over certain Veronese subrings.
متن کاملObjects in Triangulated Categories
We introduce the Calabi-Yau (CY) objects in a Hom-finite Krull-Schmidt triangulated k-category, and notice that the structure of the minimal, consequently all the CY objects, can be described. The relation between indecomposable CY objects and Auslander-Reiten triangles is provided. Finally we classify all the CY modules of selfinjective Nakayama algebras, determining this way the self-injectiv...
متن کاملLocalizations in Triangulated Categories and Model Categories
Recall that for a triangulated category T , a Bousfield localization is an exact functor L : T → T which is coaugmented (there is a natural transformation Id → L; sometimes L is referred to as a pointed endofunctor) and idempotent (there is a natural isomorphism Lη = ηL : L → LL). The kernel ker(L) is the collection of objects X such that LX = 0. If T is closed under coproducts, it’s a localizi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2012
ISSN: 0024-6107
DOI: 10.1112/jlms/jdr055